
When Will Ray-Tracing Replace Rasterization?

Kurt Akeley∗

Stanford University
NVIDIA Corporation

Panelist

David Kirk†

NVIDIA Corporation
Panelist

Larry Seiler‡

ATI Research, Inc.
Panelist

Philipp Slusallek§

Saarland University
Panelist

Brad Grantham¶

Silicon Graphics Incorporated
Moderator

1 Motivation

Ray-tracing produces images of stunning quality but is difficult to
make interactive. Rasterization is fast but making realistic images
with it requires splicing many different algorithms together. Both
GPU and CPU hardware grow faster each year. Increased GPU per-
formance facilitates new techniques for interactive realism, includ-
ing high polygon counts, multipass rendering, and texture-intensive
techniques such as bumpmapping and shadows. On the other hand,
increased CPU performance and dedicated ray-tracing hardware
push the potential framerate of ray-tracing ever higher.

Depth-buffering rasterization made scanline geometric hidden-
line techniques obsolete because it was easy to implement and drop-
ping memory prices made implementations affordable, even though
Sutherland, et al., concluded it was hopelessly inefficient.

2 Question for the Panel

Will the simplicity and/or increasing performance of ray-tracing
make rasterization obsolete, and when? Speakers will address
the future of rasterization versus ray-tracing/ray-casting techniques
based on their broad and diverse industry experience and individual
viewpoints as leaders in the graphics community.

3 Kurt Akeley

Rasterization hardware and the associated graphics standards, such
as Direct 3D and OpenGL, will be around for a long time. Ray
tracing will become feasible, outside of niche markets serviced
with custom hardware, only as it can be implemented using ras-
terization hardware infrastructure. Because rasterization hardware
is advancing in performance, flexibility, and programmability so
rapidly, we can expect dramatic improvements in the image quality
of interactive systems during the next few years. Applications
will introduce ray tracing algorithms gradually, synthesizing
rasterization, ray tracing, and other global shading techniques to
obtain the best overall results.

Kurt Akeley works part time at NVIDIA Corporation, where he
is a member of the graphics architecture team. He spends the rest
of his week at Stanford, working toward the completion of the elec-
trical engineering Ph.D. that he put on hold in 1982 to co-found
Silicon Graphics.

During his 19 years at Silicon Graphics Kurt lead the develop-
ment of several high-end graphics systems, including GTX, VGX,

∗e-mail: kurt akeley@acm.org
†e-mail: davidk@nvidia.com
‡e-mail: lseiler@ati.com
§e-mail: slusallek@cs.uni-sb.de
¶e-mail: grantham@sgi.com

and RealityEngine. He also lead the development of OpenGL, and
he continues to be involved with OpenGL’s evolution. Kurt’s past
SIGGRAPH participation includes course presentations, panel pre-
sentations , and participation in the technical program, which he
chaired in 2000. Kurt is named on thirteen patents, is a fellow of
the ACM, and in 1995 was the recipient of the ACM SIGGRAPH
Computer Graphics Achievement Award.

4 David Kirk

Ray Tracing vs. Rasterization is an interesting question, although
perhaps a bit ill-posed. Ray tracing is used both as a visibility
technique and a catch-all to describe a variety of global illumina-
tion techniques. Usually these techniques are CPU-based. Ras-
terization, typically depth buffering, is primarily used as a visibil-
ity technique, although some texture-based shadowing, illumina-
tion, and reflection techniques can make use of rasterization as the
workhorse. Usually these techniques are GPU-based.

I’ll be interested in discussing a bigger question, though:
“When will hardware graphics pipelines become sufficiently
programmable to efficiently implement ray tracing and other
global illumination techniques?”. I believe that the answer is
now, and more so from now on! As GPUs become increasingly
programmable, the variety of algorithms that can be mapped onto
the computing substrate of a GPU becomes ever broader. As part
of this quest, I routinely ask artists and programmers at movie
and special effects studios what features and flexibility they will
need to do their rendering on GPUs, and they say that they could
never render on hardware! What do they use now: crayons?
Actually, they use hardware now, in the form of programmable
general-purpose CPUs. I believe that the future convergence of
realistic and real-time rendering lies in highly programmable
special-purpose GPUs.

David is Chief Scientist and Vice President of Architecture at
NVIDIA. He was previously Chief Scientist and head of technol-
ogy, developing video game software for Crystal Dynamics, and
prior to that worked on developing graphics hardware for engi-
neering workstations at Apollo/Hewlett-Packard. David holds B.S.
and M.S. degrees from MIT and M.S. and Ph.D. degrees from the
California Institute of Technology, and is the author/inventor of
over 100 technical publications and patents in the area of computer
graphics and hardware.

86



5 Larry Seiler

Ray-tracing will never replace rasterization. Both will be subsumed
by something that is better than either, for three reasons. First, the
two algorithms do not solve the same problem. Ray-tracing ex-
cels at modeling a physical environment. Rasterization excels at
splicing many different algorithms together (that’s a strength, not
a weakness) to achieve a desired result that may not match physi-
cal reality. Second, memory bandwidth doesn’t increase as fast as
CPU performance. Rasterization algorithms are better able to pro-
duce the reference locality and good cache behavior that is required
to use memory bandwidth efficiently. Finally, rasterization is typi-
cally better at tolerating long latencies, which are getting worse as
GPUs and graphics models get more complicated.

The Next Big Thing needs to have the strengths of both algo-
rithms and needs to resolve a problem common to both: aliasing!
Standard rasterization and standard ray-tracing algorithms create
point samples that must be post-filtered, instead of correctly
pre-filtering the model. They also share the inefficiency of
repeating similar operations many times when rendering multiple
frames. Possible futures are suggested by work on beam-casting,
IBR, and by the Shadermaps algorithm, which saves intermediate
computations at multiple resolution levels for use in multiple
frames. These and other techniques should be extended to allow
mixing ray-traced, rasterized, and even volumetric techniques,
probably implemented in ways that blur the distinction between
ray-tracing and rasterization.

Larry Seiler is a hardware architect at ATI Research, Inc. Pre-
viously, Larry worked at Real Time Visualization developing volu-
metric ray tracing algorithms. Larry described this work at the 1999
MicroProcessor Forum and is a co-author of “The VolumePro Real-
Time Ray-casting System” (SIGGRAPH 1999). Other paper credits
include “Quadratic Interpolation for Near-Phong Quality Shading”
(SIGGRAPH 1998 technical sketch) and co-authorship of “Neon:
A Single-Chip 3D Workstation Graphics Accelerator” (1998 EU-
ROGRAPHICS / SIGGRAPH Workshop on Graphics Hardware,
best paper). Larry holds B.S. and M.S. degrees from Caltech and a
Ph.D. degree from MIT. Larry is an inventor for 19 issued patents.

6 Philipp Slusallek

The ray-tracing algorithm does have a number of key benefits that
make it significantly more attractive to use than the rasterization
algorithm of todays graphics hardware:

• Flexibility: Ray-tracing can accurately compute exactly those
rays required for some effect, while rasterization is highly
limited in what it can compute efficiently.

• Generality: Because of this flexibility, ray-tracing is the per-
fect match for many advanced rendering algorithms and ef-
fects required for future 3D graphics.

• Approximations: Rasterization has to rely on approximations
and special hacks for almost every rendering effect. These
hacks are usually non-intuitive, non-trivial to find and imple-
ment, and are costly or even impossible to combine with other
approximations.

• Plug & Play: Ray-tracing directly uses high-level shaders
(such as RenderMan) that can be combined with arbitrary
complexity. Even large scenes with many, complex shaders
simply work as expected without further work or tweaking of
parameters.

• Scalability: Ray-tracing scales extremely well both in scene
size (logarithmic versus linear for rasterization) and in terms
of the number of processing elements it can make use of. The
latter issue will be important for future hardware where bil-
lions of transistors in a chip must be kept busy.

Due to these arguments I am convinced that in the future, 3D
graphics will be based on ray-tracing. The biggest issue along this
road is the question about the best API and the transition to it.

What remains is the question about hardware: Will ray-tracing
and 3D graphics run on the GPU, CPU, or on some new special-
purpose hardware? The stream-processing model of the GPU has
many arguments in its favor and will most likely support some form
of ray-tracing in the near future. However the CPU guys are not
standing still either and will likely support high-performance ray-
tracing on single CPUs in the not too distant future, too.

It will be interesting to watch the two groups, each striving to
build the best hardware support for ray-tracing and the future of
3D graphics.

Philipp is full professor at the computer graphics lab of Saarland
University. From 1998 to 1999 he was visiting assistant profes-
sor at the Stanford University graphics lab. He received a Diploma
in physics from the University of Tubingen, Germany in 1990 and
a PhD in computer science from the University of Erlangen, Ger-
many in 1995. He was responsible for the design of a commercial
2D/3D CAD package and has been leading the Vision project, a
large object-oriented and physically-based rendering system. His
current research activities focus on interactive ray-tracing and inter-
active lighting simulation. Other research topics include design of a
network-integrated multi-media infrastructure, consistent illumina-
tion in virtual environments, physically-based and realistic image
synthesis, and object-oriented software design. Philipp organized
the SIGGRAPH 2001 course “Interactive Ray-Tracing”.

7 Brad Grantham

Rasterization has always represented speed because of its direct
forward mapping from triangles to screen pixels. Over its many
years of dominance in interactive rendering, lots of techniques have
been incorporated for increased realism. Ray-tracing, however,
provides global illumination and high-quality surface appearance
at a much lower price in implementation. Ray-tracing will
continue to increase in speed as Moore’s law carries us forward
and as commodity ray-tracing hardware appears, but rasterization
relies on the creativity and cleverness of engineers and artists in
the face of exponentially increasing complexity. Perhaps some
new algorithm will triumph over both in the long term but my
prediction consists of the adoption within five to ten years of
ray-tracing over rasterization (with perhaps an intermediate hybrid)
through a dedicated device much like today’s AGP 4x graphics
adapter and an open standard API embodying both ease-of-use and
performance much as OpenGL has provided for rasterization.

Brad Grantham works in the Applications Engineering division
at SGI, specializing in helping application developers use OpenGL
and SGI’s toolkits for visualization. Previously, Brad worked for
VA Linux Systems on graphics workstation development and be-
fore that in the Advanced Graphics Software division of Silicon
Graphics, Inc. on scene graphs and toolkits.

Brad spoke at the “Advanced Rendering Techniques in OpenGL”
course at SIGGRAPH from 1997 through 2000 and organized the
“OpenGL on Linux” course at the Fall 2000 Game Developers’
Conference. Brad also designed and implemented the open source
“ACTC” API and library for creating triangle strips from triangles.

87


